
AIST14-A00014

Development of a Reference Implementation of the NSI
Connection Service Version 2.0 Standard

Atsuko TAKEFUSA, Tomohiro KUDOH, Ryousei TAKANO
Hidemoto NAKADA, Katsuhiko OHKUBO, Fumihiro OKAZAKI

National Institute of Advanced Industrial Science and Technology (AIST)

Summary

There have been several experiments on dynamic path provisioning over multiple R&E networks pro-
vided by heterogeneous management domains, and production services using this feature are being ini-
tiated. The OGF NSI working group defines the Connection Service (CS) protocol standard for such a
network service. In order to verify the protocol, provider, aggregator, and requester software modules and
monitoring tools for the network service are required. We have developed CS v2-based software modules
in the GridARS framework. In the CS v2 interoperation experiments, we contributed by providing our
reference implementations and monitoring tools. Also, the framework is open-source software, and an
application, a provider implementation, and a monitoring tool have been developed by third parties using
our framework.

Key words: NSI, Network, Resource Management, Demonstration, Web Services

1

AIST14-A00014

1 Introduction

Software Defined Networking (SDN) technologies, which dynamically control network switches by us-
ing software, are being put to practical use. OpenFlow [1], a typical SDN technology, splits the control
function and transfer function from a traditional network switch. The OpenFlow-based architecture con-
sists of a controller software component and multiple OpenFlow-compliant switches.

On Research and Education (R & E) network testbeds, there have been several demonstrations, which
dynamically construct and provide an end-to-end “path” over multiple network domains [2, 3, 4, 5].
In order to automatically and easily construct such a path, it is necessary to use a common service
interface, which provides the capability to control a path based on each on-demand or advance reservation
request. Therefore, the Network Services Interface (NSI) working group [6] in the Open Grid Forum
(OGF) defines the Communication Service (CS) protocol, whereby a path network can be provided
as a service. The CS protocol defines protocols to request or provide a network service between two
Network Service Agents (NSA), such as a requester and a provider, a requester and an aggregator, or an
aggregator and a provider. CS enables the requester to reserve, provision, release and terminate a point-
to-point connection, that satisfies each requester’s requirements, such as bandwidth, latency and VLAN,
and the query status of the reserved connection. If a requester requires a path spanning over multiple
network domains, a requester can reserve the path by an aggregator via tree-based or chained CS request
processes between multiple NSAs.

In order to confirm the feasibility of the CS protocol, we conducted the CS v. 1.0 interoperation
experiments between SOAP-based reference implementations in 2011. In 2012 and 2013, the alpha and
beta versions of CS were defined and their interoperation experiments were conducted over multiple
network domains and testbeds from Asia, Europe, and South and North America. These experiments
required various software components including not only a network management system, a provider, an
aggregator and a requester, but also graphical or command line interface and a visualization tool for the
requester. However, it is difficult for each network domain developer to develop all of these software
components because they have to keep up with the CS protocol updates for each version.

We have been developing the GridARS software, that enables us to co-allocate various resources, in-
cluding network connections, provided by multiple domains [7, 8]. In this study, we developed software
modules for a provider, an aggregator and a requester of the NSI CS v. 2.0 (hereafter CS v2) standard,
and a monitoring tool, which can visualize the status of connection services based on CS. We contributed
the developed software modules to the CS v2 interoperation experiments over eighteen actual networks
from Asia, Europe, and South and North America, provided by different organizations. In addition, Gri-
dARS is open source software and we are encouraged that third parties have used GridARS to develop for
CS-compliant applications or providers, a high-quality video streaming application by using UltraGrid
[9], and the SINET [10] CS provider.

2 NSI Connection Service v. 2.0

The OGF NSI working group has been standardizing the Connection Service (CS) protocol as a network
service interface, which enables network service providers to provide a path network as a service. We
describe the details of the CS protocol after we explain the system architecture the CS protocol assumes.

2.1 NSI architecture

Figure 1 shows the NSI architecture as defined by the NSI working group [11]. The NSI architecture
consists of network service Providers, Requesters and Aggregators. They are called Network Service
Agents (NSA). Also, each network endpoint in a network managed by each Provider is called a Service
Termination Point (STP).

2

AIST14-A00014

STP (Service Termination Point)	

TF	 TF	
A:0	
A:1	

A:2	
A:3	
A:4	

B:0	
B:1	
B:2	

B:3	
B:4	

B:5	
B:6	

TF	D:0	
D:1	

D:2	
D:3	

TF	C:0	
C:1	 C:3	

Network A	 Network B	

Network D	

Network C	

-	
A:0 to D:2, 	
1:00	2:00, 1Gbps	

Requester	

Requester	

Provider	
Aggregator	NSA	

User agent	

NRM	

Provider	
NSA A	

NRM	

Provider	
NSA B	

NRM	

Provider	
NSA C	

NRM	

Provider	
NSA D	

-	-	 -	
B:1 to B:4, 	
1:00	2:00, 1Gbps	

A:0 to A:3, 	
1:00	2:00, 1Gbps	

D:1 to D:2, 	
1:00	2:00, 1Gbps	

NSI CS	

TF: Transfer Function	

NSA: Network
 Service Agent
NRM: Network
 Resource Manager	

Network Service Plane	
Data Plane (abstracted)	

Discovery	
Service	
Topology	
Service	

Figure 1: NSI Architecture.

In addition to CS, the NSI working group defines two services: Topology Service and Discovery
Service. Topology Service manages the information of multiple domain networks and their adjacency
relationships, and the CS providers and STPs of each network. On the other hand, Discovery Service
enables the users or aggregators to query and provide details of network services each Network Service
Agent (NSA) provides. Based on CS, Topology Service, and Discovery Service, an ultimate Requester
can request a performance-assured end-to-end path between different domain STPs to an Aggregator and
the Aggregator requests the paths from related Providers, in a hierarchical or chain-based manner. The
Requester can reserve, provision, release, terminate and query the requested path whose criteria, such as
bandwidth, latency and VLAN, are assured.

Each Provider manages multiple network switches which compose its network, and discloses their
network information, such as STPs and a service access point, on a Topology Service server in advance.
Based on Topology Service information, a Requester sends a reservation or on-demand request for a
path. Here, a Requester can specify the route of the requested path, and so the Requester does not need
to specify Explicit Route Objects (EROs). In the latter case, a Requester requests a path to an Aggregator.
The Aggregator selects a suitable route for the requested path based on information provided by Topology
Service, and sends requests to the related Providers on behalf of the Requester. Each Provider reserves
the requested path in its network and control, the requested path following the Requester’s operation,
based on the CS protocol.

In Figure 1, the Requester (User agent) sends the Aggregator a reservation request for a 1 Gbps path
between STP A:0 in Network A and STP D:2 in Network D, from 1:00am to 2:00am. The Aggregator
selects the path over Network A, Network B and Network D, and requests paths A:0 to A:3, B:1 to
B:4, D:1 to D:2 from the related Providers, respectively. Here, A:3 to B:1 and B:4 to D:1 are physically
connected in advance and their relationships are described in topology information provided by Topology
Service. The Requester can use the path between A:0 and D:2 after all of the reservation processes have
succeeded.

3

AIST14-A00014

Requester	 Provider	 Network	
1.	 reserve.rq	

reserve.cf	
ack	

2.	 rsvCommit.rq	
ack	

rsvCommit.cf	

3.	 provision.rq	
ack	

provision.cf	

4.	 query.rq	
ack	

query.cf	

6.	 terminate.rq	
ack	

terminate.cf	

5.	 DPstateChange.nt	

provision	 link	 	
at	 start	 Dme	

dataPlaneStatus:	
	 acDve=true	

link	 down	
dataPlaneStatus:	
	 acDve=false	

dataPlaneStatus:	
	 acDve=false	

Figure 2: Execution flow based on the CS v. 2.0 protocol.

2.2 Connection Service protocol

The CS protocol defines an interface used to request or provide a network service between two NSAs in
an asynchronous manner. The both the Requester and Provider NSAs each have global IP address and
they can request or respond by using the Requester or Provider Web services interface. Also, the CS v2
provides a two-phase commit reserve operation, which enables use of a modification request for a path
provided by multiple networks.

The Provider interface defines reserve, reserveCommit and reserveAbort, provision, release, ter-
minate, and query operations. The reserve operation can be used as a modification request, too. Each
reserved path is identified by a Connection ID issued by a Provider. After the first reserve request, the
Requester has to specify the issued Connection ID for each request.

The Requester interface provides xxxConfirmed and xxxFailed operations. Here, xxx represents each
operation the Requester sent, such as reserve or reserveCommit. Also, there are several notification
messages, the Provider sends to the Requester when some event happen on the reserved path, such as
dataPlaneStateChange, messageDeliveryTimeout and errorEvent. dataPlaneStateChange reports
on a state change of a data plane, e.g., active or inactive. messageDeliveryTimeout and errorEvent
report that a timeout or an error happened.

Figure 2 shows the general execution flow between a Requester and a Provider based on the CS v2
protocol. Operations between Provider and Network indicate control passed to the Provider’s network
switch. Each message can be described in the following way: The Requester sends a 1. reserve request
to the Provider and the Provider first returns an ack to the Requester. If the Provider can prepare the re-
quested path, the Provider sends a reserveConfirmed message to the Requester. Otherwise, the Provider
sends a reserveFailed message. Then, the Requester sends 2. reserveCommit in order to confirm the
requested reservation. The Provider sends reserveCommitConfirmed after the reservation has been con-
firmed in the Provider system. The Requester can send any of 3. provision, 4. query and 6. terminate
request in the same asynchronous manner. After the reservation start time has passed and a provision

4

AIST14-A00014

Requester	 Agent	 (RA)	 Wrapper	

CLI	 Portal	
Server	

Provider	 Agent	 (PA)	 Wrapper	

Aggregator	 NSA	
NSI	

NSI	

NSI	

AIST	 NRM	 *	 RM	

Java	 Resource	 Manager	 Interface	

Provider Modules	

Java	 	
Client	 API	

Viewer	
Server	

Portal	 Timetable	
Viewer	

Auto	 Earth	
Viewer	

Requester Modules	

RA	 Wrapper	

RA	 Wrapper	

SINET	
NRM	

Figure 3: GridARS software modules.

request has been received, the Provider uses the corresponding network switch to provision the reserved
path. Then, the Provider sends a 5. dataplaneStateChange notification message to the Requester. From
the notification, the Requester knows the requested path has been linked up.

The CS v2 protocol defines a protocol that can be used to request and provide a service in-advance or
on-demand. The service descriptions can be defined by each user community. Namely, the CS protocol
can be used for not only networks, but also for other resources, such as computers and storage.

3 GridARS framework

We have been developing the GridARS framework, that enables management of inter-cloud resources
provided by multiple administrative domains. In this study, we examine CS v2-compliant reference im-
plementations we developed of a Provider, an Aggregator, a Requester, and a software libraries to develop
those network service agents, as a part of the GridARS framework. We also developed a monitoring tool,
which allows visualization of the reservation and data plane status of NSI experimental environments.
First, we describe the overall architecture of the developed software modules, and then explain the details
of each software module.

3.1 Software architecture

Figure 3 shows the CS v2 protocol-based GridARS software modules, which consist of Requester mod-
ules, an Aggregator module, and Provider modules. Requester modules consist of a Command Line In-
terface (CLI), Java Client API, Portal Server and Portal system, Viewer Server, and a Timetable Viewer.

5

AIST14-A00014

// Create NSI2Client instance

NSI2Client client = new NSI2Client(

providerNSA, providerURI, requesterNSA, requesterURI, replyWaitMsec, listener);

// Create criteria instance

ReservationRequestCriteriaType criteria =

TypesBuilder.makeRsvReqCriteriaType(

schedule, srcstp, vlan, deststp, vlan, capacity);

// Send reserve request. rsvReply is returned when cf msg has been received

ReserveReply rsvReply = client.reserve(

connectionId, globalRsvId, description, criteria);

// Send reserveCommit request

ReserveCommitReply commitReply = client.reserveCommit(reply.getConnectionId());

Figure 4: A pseudo code segment using the Java Client API.

Provider modules are composed by the Java Resource Manager Interface, and the AIST Network Re-
source Management system (NRM). In addition, modules in green indicate software developed by third
parties.

The Requester, Aggregator, and Provider modules utilize Requester Agent (RA) and Provider Agent
(PA) wrapper modules. The CS v2 protocol defines a SOAP-based Requester and Provider Web services
interface described using WSDL (Web Services Description Language). We have used Apache CXF
[12], an open source Web services framework, and the Jetty application server [13] in order to develop
our RA and PA wrapper modules.

3.2 Requester modules

3.2.1 Command Line Interface (CLI)

CLI allows a user to send CS v2 Web services-based Requester operations, as described in Section 2.2,
from the user’s command line to Aggregators or Providers. CLI provides reserve, commit/abort,
provision, release, terminate, and query commands, and parameters, such as bandwidth, reserva-
tion time, and Connection ID, that can be specified in the command options. Also, CLI asynchronously
shows confirmed, failed, and notification messages from the Aggregator or the Provider on each user
terminal when the messages have been received.

3.2.2 Java Client API

The Java Client API provides a Java programming interface, which enables the development of a CS
v2 protocol-compliant Requester application program. The API also supports general authentication
mechanisms such as HTTP basic authentication and OAuth2 over Transport Layer Security (TLS).

Figure 4 gives a pseudo code segment implemented by using the Java Client API. First, a user cre-
ates an NSI2Client instance, client, which is a Requester entity. The user provides the NSI2Client
constructor with a Provider name, the Provider service URL, a Requester name, the Requester service
URL, the waiting time for the response, and listener information. listener is used to receive mes-
sages from Aggregators or Providers. ReservationRequestCriteriaType is a type which stores
reservation request criteria, such as reservation time, source and destination STPs, their VLAN IDs,
and capacity information. The client.reserve() method sends the reserve request to the specified
Provider. In the first reserve request, connectionId is set to null, because the Provider issues a
connectionId for this reservation request. If the Provider returns a reserveConfirmed message, the

6

AIST14-A00014

program receives a ReserveReply instance, that includes connectionId. Then, the program sends the
client.reserveCommit() method with the received connectionId and the reservation is booked.

3.2.3 Portal Server and Portal

In order to support the CS interoperation experiments, we defined a simple REST API and developed
Portal Server and Portal as shown in Figure 3. Portal Server implements the REST API, which enables
sending of CS v2 requests from web browsers. Portal provides a graphical requester interface, which
sends reservation-related requests to the Portal Server. Portal Server was written in Java and developed
using OOWeb [14], a light-weight HTTP server framework. Portal was developed using JavaScript and
JSON.

3.2.4 Viewer Server and Timetable Viewer

As demonstration tools, we also developed Viewer Server and Timetable Viewer, which enable visualiza-
tion of CS v2-based service reservation statuses. Viewer Server periodically retrieves all the reservation
information managed by Aggregators. We extend the Aggregator’s behavior of a CS v2 query request
to provide Viewer Server with the managed reservation information because NSI has not defined a mon-
itoring interface, yet. Viewer Server provides Web-based graphical user interface with the retrieved
information via the REST API. We developed Viewer Server using Java and OOWeb. We also developed
Timetable Viewer as a Java application. Timetable Viewer visualizes reservation statuses of network
paths, and each user’s requested end-to-end paths.

3.3 Aggregator

Aggregator automatically selects a suitable route for each requested path, and sends a reservation request
to the related NSI Providers. Based on topology information provided by Topology Service, Aggregator
calculates all the end-to-end paths among all STPs in advance. For each requested path from Requester,
Aggregator selects a route from the calculated results and sends requests to the Providers, which manage
the paths of the selected route. After Aggregator receives all the reserveConfirmed messages from
the Providers, Aggregator sends reserveConfirmed to the Requester. If a part of a path reservation
has failed, Aggregator sends the reserveFailed message to the Requester and sends the terminate
messages to the related Providers. Aggregator also supports HTTP basic authentication and OAuth2 over
TLS.

3.4 Provider modules

3.4.1 Java Resource Manager Interface

The Java Resource Manager (RM) Interface allows development of a CS v2-compliant Provider. RM
Interface provides a Service Provider Interface (SPI) as shown in Figure 5, and calls these methods of a
resource management software program, which implements the SPI, when RM Interface has received a
CS v2 operation. RM Interface returns a confirmed or failed message to the Requester, based on the result
of the resource management software process. Also, a resource management software program can notify
RM Interface via the Notifier instance provided by RM Interface when the resource management
software wants to notify the Requester of a status change, such as a link up or down, or a failure.

3.4.2 AIST Network Resource Management System

We developed a network resource management system (NRM), which manages and controls the network
provided by AIST. AIST NRM was developed using the Java RM Interface.

7

AIST14-A00014

public interface NSI2ResourceManager {

public void setNotifier(notifier);

public void reserve(header, connectionId,

globalReservationId, criteria);

public void modify(header, connectionId,

criteria);

public void commit(header, connectionId);

public void abort(header, connectionId);

public void provision(header, connectionId);

public void release(header, connectionId);

public void terminate(header, connectionId);

}

Figure 5: A pseudo code of Java resource management interface.

GEANT	

NORDUnet	

NetherLight	
(SURFnet)	

MANLAN	

iCAIR 
(StarLight)	

AMpath	

SouthernLight	

ESnet	

CzechLight	

UvALight	

GRnet	

PIONEER	

JGN-X	

KRLight	

AIST	SINET	

KDDI	

Singalen	

Asia	 North & South America	 Europe	

AIST	 	
Aggregator	

SURFnet	
Aggregator	

Viewer	
Server	

SURFnet	 Portal	AIST	 Portal	
Timetable	
Viewer	

Auto	 Earth	
Viewer	

AIST	 Portal	
Server	

SURFnet	 Portal	
Server	

C
o
n
tro

l P
lan

e
	

D
ata P

lan
e
	

NSI CS v2	

NSI CS v2	NSI CS v2	

UltraGrid	
applica?on	

Figure 6: An overview of NSI test bed and software components in the NSI CS v2 interoperation exper-
iments in 2013.

4 Evaluation

In order to show the feasibility of our software modules, we describe the NSI CS v2 interoperation
experiments and introduce use cases of our software modules by third parties.

4.1 NSI CS v2 interoperation experiments

The NSI CS v2 interoperation experiments were held at GLIF 2013 and SC13. Figure 6 shows an
overview of NSI testbed and software components in the NSI CS v2 interoperation experiments in 2013.
The experimental test bed consisted of eighteen networks from Asia, Europe, and South and North
America, five different provider implementations, two aggregator implementations, and two requester
implementations. Each network is controled by each PA instance although we omit eighteen PAs from
Figure 6.

We provided this international experiment with our AIST NRM provider, an aggregator, a Portal
(requester), Viewer Server, and Timetable Viewer. Figure 7 shows a snapshot of our portal. The portal

8

AIST14-A00014

Figure 7: Snapshot of the portal.

indicates that a user can specify source and destination STP information, path route, reservation time,
bandwidth, and a provider or aggregator to which the user sends this request from the portal. When a
user ticks a button related to each CS operation, the user can send the request and the request is processed
by the specified provider. In this snapshot, the user requests a path from geant.net:ps to icair.org:ps.
Figure 8 shows a snapshot of the Timetable Viewer at the experiment. The right-hand side indicates a
reservation list which shows the Connection ID of each path reservation and its requester. The left-hand
side indicates a timetable for path reservations, and each belt in the timetable means reservation time,
from start time to end time. The horizontal axis indicates time and the white line represents the current
time. The same colors in the reservation list and the timetable indicate the same reservations. Namely,
the path from geant.net:ps to icair.org:ps reserved from the portal consists of three paths provided by
geant.net, netherlight and icair.org, and the paths are represented by the three red belts in Figure 8. From
this experiment, we confirmed that our software modules can work normally in an actual environment.

4.2 Use cases of GridARS framework by third parties

There are three existing applications developed using the GridARS framework.

UltraGrid application The UltraGrid [9] developer team has developed an on-demand high resolution
video streaming application, which dynamically reserves a path over the NSI experimental test
bed and sends video streaming over the path. This application used the Java Client API in order to
reserve a path based on NSI CS as shown in Figure 6.

SINET provider agent (PA) NII has developed an NSI CS-compliant PA for SINET, which is a re-

9

AIST14-A00014

Figure 8: Snapshot of the timetable viewer.

search and educational network in Japan. NII has already provided its own provisioning system.
NII has also developed a protocol converter module between NSI CS and their own interface using
the Java RM Interface, and has confirmed its interoperability at the SC13 experiment.

Auto Earth viewer KDDI has developed the Auto Earth viewer based on the Google Earth API [15] in
order to support the NSI CS interoperation experiments. The Auto Earth viewer retrieves all of
the reservation information from our Viewer Server via the REST I/F, and visualizes reserved and
active paths over Google Earth.

5 Related work

There have been several software modules developed based on the NSI CS v2. OpenNSA [16] is a
Python-based reference implementation developed by the NORDUnet project. The ESnet team devel-
oped a Java-based bridge module between the NSI CS protocol and their network resource management
system called OSCARS [17]. SURFnet developed a portal system, an aggregator and a provider as open-
source software modules in the same way as our GridARS framework does. However, the GridARS
framework also provide libraries, such as the Java Client API and RM Interface, and monitoring tools.

6 Conclusion

We have developed NSI CS v2-compliant software modules, such as a provider, an aggregator, a re-
quester and related libraries, and monitoring tools which enables visualization of the statuses of service
utilization, just as in the GridARS framework. We contributed the developed software modules to the
CS v2 international interoperation experiments over eighteen networks from Asia, Europe, and South
and North America, held at GLIF 2013 and SC13. The GridARS framework is open-source software,
and we showed the software is being used by third parties, including PA for SINET, an actual production
network.

After the experiments in 2013, the CS v2 standard document was published in June, 2014 [18] and
the experiments of CS v2 over Transfer Layer Security (TLS) were conducted in 2014. We continue to
develop software modules for the latest CS protocol and aim to standardize interfaces for portal and mon-
itoring systems in order to achieve improved usability of network services in future work. In addition,
we will improve the performance, scalability, and robustness of our software framework.

Acknowledgments

This work was partly funded by the FEderated testbeds for Large-scale Infrastructure eXperiments (FE-
LIX) project of the National Institute of Information and Communications Technology (NICT), Japan,

10

AIST14-A00014

and the Project for Developing Innovation Systems of MEXT, Japan.

References

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner, “OpenFlow: Enabling Innovation in Campus Networks,” ACM SIGCOMM Computer
Communication Review, vol.38, pp.69–74, 2008.

[2] A. Takefusa, M. Hayashi, N. Nagatsu, H. Nakada, T. Kudoh, T. Miyamoto, T. Otani, H. Tanaka,
M. Suzuki, Y. Sameshima, W. Imajuku, M. Jinno, Y. Takigawa, S. Okamoto, Y. Tanaka, and
S. Sekiguchi, “G-lambda: Coordination of a Grid Scheduler and Lambda Path Service over GM-
PLS,” Future Generation Computing Systems, vol.22 (2006), pp.868–875, 2006.

[3] S.R. Thorpe, L. Battestilli, G. Karmous-Edwards, A. Hutanu, J. MacLaren, J. Mambretti, J.H.
Moore, K.S. Sundar, Y. Xin, A. Takefusa, M. Hayashi, A. Hirano, S. Okamoto, T. Kudoh,
T. Miyamoto, Y. Tsukishima, T. Otani, H. Nakada, H. Tanaka, A. Taniguchi, Y. Sameshima, and
M. Jinno, “G-lambda and EnLIGHTened: Wrapped In Middleware Co-allocating Compute and
Network Resources Across Japan and the US,” Proc. GridNets2007, 2007.

[4] C. Barz, M. Pilz, T. Eickermann, L. Kirtchakova, O. Waldrich, and W. Ziegler, “Co-Allocation of
Compute and Network Resources in the VIOLA Testbed,” TR 0051, CoreGrid, 9 2006.

[5] I. Baldine, Y. Xin, A. Mandal, C. Heermann, J. Chase, V. Marupadi, A. Yumerefendi, and D. Ir-
win, “Autonomic Cloud Network Orchestration: A GENI Perspective,” Proc. the 2nd International
Workshop on Management of Emerging Networks and Services (IEEE MENS ’10), 12 2010.

[6] Open Grid Forum (OGF) Network Service Interface. http://redmine.ogf.org/projects/
nsi-wg/.

[7] A. Takefusa, H. Nakada, T. Kudoh, Y. Tanaka, and S. Sekiguchi, “GridARS: An Advance
Reservation-based Grid Co-allocation Framework for Distributed Computing and Network Re-
sources,” Job Scheduling Strategies for Parallel Processing, pp.152–168, Springer Berlin / Hei-
delberg, 4 2008.

[8] A. Takefusa, H. Nakada, R. Takano, S. Yanagita, K. Ookubo, T. Kudoh, and Y. Tanaka, “Resource
Management Framework for Multi-domain Cloud,” IEICE TRANSACTIONS on Information and
Systems, vol.J94-B, no.10, pp.1332–1340, 10 2011. (in Japanese).

[9] UltraGrid Software. http://www.ultragrid.cz/en.

[10] Science Information NETwork 4 (SINET4). http://www.sinet.ad.jp/.

[11] G. Roberts, T. Kudoh, I. Monga, J. Sobieski, and J. Vollbrecht, “Network Services Framework
v1.0,” GFD. 173, 2010.

[12] Apache CXF. http://cxf.apache.org/.

[13] Jetty. http://www.eclipse.org/jetty/.

[14] OOWeb. http://ooweb.sourceforge.net/.

[15] Google Earth API. https://developers.google.com/earth/.

[16] OpenNSA. https://github.com/NORDUnet/opennsa.

11

AIST14-A00014

[17] Virtual Circuits (OSCARS). http://www.es.net/services/virtual-circuits-oscars/.

[18] G. Roberts, T. Kudoh, I. Monga, J. Sobieski, J. MacAuley, and C. Guok, “NSI Connection Sevice
v2.0,” GFD. 212, 2014.

Development of a Reference Implementation of the NSI Connection Service
Version 2.0 Standard.
31 March 2015
Information Technology Research Institute,
National Institute of Advanced Industrial Science and Technology (AIST)
1-1-1 Umezono, Tsukuba-shi, Ibaraki
305–8568, Japan
atsuko.takefusa@aist.go.jp
Reproduction in whole or in part without written permission is prohibited.

12

